
Perl6
Now	it	is	released,	is	it	worth	looking	at	?

Perl	6	introduces	lots	of	new	features	many	of	which	you	will	never	need

Fortunately	you	can	learn	and	use	a	subset	of	Perl	6	that	meets	your	typical	needs

Things	we	have	in	Perl5	which	will	just	be	better	in	Perl6

• better	threading
• better	garbage	collection
• much	better	foreign	function	interface	(cross-language	support)
• full	Unicode	processing	support
• string	processing	on	various	Unicode	levels,	including	grapheme	level
• a	built-in	switch	statement
• Multiple	versions	of	a	module	can	be	installed	and	loaded	simultaneously
• System	administration	much	simpler
• Fewer	lines	of	code	allow	for	more	compact	program	creation
• Huffman-coding	of	names	allows	for	better	readability

New	Perl	6	Features
• Extensible	grammars	for	parsing	data	or	code	(which	Perl	6	uses	to	parse	itself)
• Subroutine	and	method	signatures	for	easy	unpacking	of	positional	and	named	parameters,	and	data	structures
• Multimethods
• coroutines
• continuations
• Currying
• Signatures
• Captures
• Exceptions
• Built	in		OO
• Functional	programming	primitives,	{lazy	and	eager}	evaluation
• junctions,	autothreading,	hyperoperators (vector	operators)
• Advanced	introspection	and	meta-programming
• language-level	macros*	Module	aliasing	and	versioning,	optional	static/gradual	typing
• Garbage	collection
• Greatly-improved	foreign	function	interface
• Optional	Typing	System
• Interfacing	to	external	libraries	in	C	/	C++	is	trivially	simple	with	NativeCall.
• Interfacing	with	Perl	5	(CPAN)	/	Python	modules	is	trivially	simple	with	Inline::Perl5	resp.	Inline::Python.*
• Perl	6	runs	on	a	variety	of	back-ends

That's	a	lot	of	new	stuff	but	what	makes	it	worthwhile	to	change	?

In	my	opinion	there	are	two	features	in	Perl	6	which	are	not	available	in	
Perl5	which	make	it	worth	looking	at	:-

1. Enabling	you	to	generate	different	backends
2. Using	Grammars	

Using	different	backends

One	of	the	design	features	of	Perl6	is	to	be	able	to	compile	Perl6	code	
using	different	backends enabling	you	to	generate	code	to	run	on	
MoarVM,	JVM	or	Javascript VM

Unfortunately	only	the	MoarVM backend	is	working	with	the	rakudo
compiler	at	the	moment	but	when	it	is	workign you	wil be	able	to	
produce	java	classes	from	perl6	code.

To	build	Java	classes,	all	you	will	need	to	do	is	build	the	jvm backend	to	produce	the	perl6-j	compiler	and	then	tell	it	to	produce	a	
class	file	for	your	perl6	code	using	the	–target=classfile switch

To	build	the	jvm backend	it	is	easiest	to	build	perl6	using	rakudobrew which	is	simllar to	perlbrew but	for	perl6

i.e.
git clone	https://github.com/tadzik/rakudobrew.git

export	PATH=$PWD/rakudobrew/bin:$PATH

rakudobrew init

rakudobrew build	jvm

rakudobrew switch	jvm

perl6-j		--target=classfile –output=MyClass.class <your	perl6	script>	

Grammars

Grammars	are	a	powerful	tool	used	to	destructure text	and	often	to	
return	data	structures	that	have	been	created	by	interpreting	that	text.
For	example,	Perl	6	is	parsed	and	executed	using	a	Perl	6-style	
grammar.
The	grammar	to	parse	JSON	is	only	39	lines	long

use	v6;
unit	grammar	JSON::Tiny::Grammar;

token	TOP							{	\s*	<value>	\s*	}
rule	object					{	'{'	~	'}'	<pairlist>					}
rule	pairlist {	<pair>	*	%	\,												}
rule	pair							{	<string>	':'	<value>					}
rule	array						{	'['	~	']'	<arraylist>				}
rule	arraylist {		<value>	*	%	[\,]								}
proto	token	value	{*};
token	value:sym<number>	{				'-'?				

[0	|	<[1..9]>	<[0..9]>*]	
[\.	<[0..9]>+]?		
[<[eE]>	[\+|\-]?	<[0..9]>+]?	}

token	value:sym<true>				{	<sym>				};
token	value:sym<false>			{	<sym>				};
token	value:sym<null>				{	<sym>				};
token	value:sym<object>		{	<object>	};
token	value:sym<array>			{	<array>		};
token	value:sym<string>		{	<string>	}
token	string	{				\"	~	\"	[<str>	|	\\ <str=.str_escape>]*}
token	str {				<-["\\\t\n]>+}
token	str_escape {				<["\\/bfnrt]>	|	'u'	<utf16_codepoint>+	%	'\u'}
token	utf16_codepoint	{				<.xdigit>**4}

